
Computational Geosciences (2018) 22:775–787
https://doi.org/10.1007/s10596-018-9725-9

ORIGINAL PAPER

Cache-efficient parallel eikonal solver for multicore CPUs

Alexandr A. Nikitin1,2 · Alexandr S. Serdyukov1,2 · Anton A. Duchkov1,2

Received: 15 February 2017 / Accepted: 19 January 2018 / Published online: 29 January 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract
Numerical solution of the eikonal equation is frequently used to compute first-arrival travel times for a given velocity model
in seismic applications. Computations for large three-dimensional models become expensive requiring the use of efficient
parallel solvers. We present new parallel implementations of the fast sweeping and locking sweeping methods optimized
for shared memory systems such as multicore CPUs; we call them block fast sweeping method (BFSM) and block locking
sweeping method (BLSM). Proposed methods are based on the domain decomposition approach with a special attention
paid to high efficiency of the cache utilization and task execution synchronization. Performance tests on realistic models
show high parallel efficiency of 85–95% on modern multicore CPUs and require the same number of iterations to converge
as do the serial sweeping methods. We also highlight the importance of properly selecting the stopping criterion in the
iterative sweeping methods aiming for a balance between computational time and accuracy of the result required by an
application. In particular, we show that in seismic applications one can reach reasonable accuracy of computed travel times
while dramatically reducing the number of iterations compared to the case of using the full convergence stopping criterion.
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Mathematics Subject Classification (2010) 35Q86 · 86A15 · 35L60 · 65Y05 · 65Y10

1 Introduction

Computation of travel times of seismic waves is widely used
in seismic exploration and earthquake seismology. It forms
the basis of seismic data processing and inversion [2] aiming
at reconstruction of the distribution of seismic velocities in
the subsurface.

Seismic travel times are computed by solving the eikonal
equation; the most popular method for that is the ray tracing
[5]. For complicated heterogeneous velocity models, it is
increasingly difficult to use ray tracing for computing travel
times. In this case, it is better to use the so-called eikonal
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solvers: to solve the eikonal equation numerically using the
viscosity solution [8] which accounts only for the fastest
arrivals. The necessary components of any eikonal solver
are local approximation of the PDE and global algorithm
of time field numerical propagation, that assures causality
and minimality of obtained travel times. One of the first
methods of finite difference solution of the eikonal equation
was proposed in [29, 30]. However, this method does not
always guarantee computation of correct first-arrival travel
times depending on the velocity model complexity.

Note that the eikonal equation is a particular case of
static Hamilton-Jacobi equations. More universal numerical
techniques were developed for solving this class of
equations [18, 24]. Such equations also appear in seismic
processing: seismic data continuation with offset [14],
velocity continuation of seismic data and images [12, 15],
and data continuation in depth [13, 25].

Here, we mention some of the numerical eikonal solver
algorithms in more details with a special attention paid to
their parallel implementations. One of the most frequently
used eikonal solver algorithms is the fast marching method
(FMM) [22, 23, 28]. It is closely related to Dijkstra’s
method for finding the shortest path on a graph [11]. FMM
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is unconditionally stable—it always finds the viscosity
solution by using upwind finite difference stencil and
dynamically determining the order in which to process grid
points according to the causality property of the eikonal
equation. FMM does this by starting from the initial front
position (the source point) and marching the front outwards
one grid point at a time by using the heapsort algorithm to
find the correct grid point to update. The complexity of this
method is O(N logN) where N is the total number of grid
points and logN comes from the heapsort algorithm. Due
to the strict causal ordering of computations in grid points,
FMM is an inherently serial method which complicates its
efficient parallel implementation. A recent parallel version
of the FMM [3] is based on domain decomposition of
the grid, where serial FMM is used to compute solutions
inside subdomains assigned to different execution threads.
Causality between subdomains is enforced by re-running
serial FMM whenever the boundary values change.

Another popular method is the fast sweeping method
(FSM) [31]. FSM uses upwind finite difference stencil and
Gauss-Seidel iterations with alternating sweeping orderings
to converge to the viscosity solution. Modification of the
FSM, called locking sweeping method (LSM) [1], reduces
computational time of FSM by eliminating unnecessary
computations. Theoretically, it takes only O(N) operations
to compute travel times using FSM for N grid points.
However, the number of iterations required to converge
depends upon the complexity of the velocity model and
generally cannot be estimated beforehand. That is why
FMM can be faster than FSM in some situations. In fact, it
is hard to compare these approaches, since there is a variety
of FMM and FSM modifications and the efficiency is also
very sensitive to program implementation (see [4] for one
of the recent studies on the matter). There have been several
parallel implementations proposed for the fast sweeping
method [9, 10, 32].

More recent methods of the eikonal equation solution
include fast iterative method [17], heap-cell method [6],
and its parallel implementation [7]. Fast iterative method
is well designed for parallel implementation on SIMD
architectures, such as GPUs. It uses an unsorted list of
active points where the solution is updated in parallel.
In its block-based version, groups of points (blocks) are
maintained in this list and blocks are updated in parallel,
with new blocks added to the list if any of their grid points
have received updates. The heap-cell method combines the
approaches of FMM and FSM on different scales by using
the domain decomposition. Fast-marching type approach is
used to order the subdomains for processing, and the locking
sweeping method is used inside these subdomains.

In this paper, we introduce new parallel implementa-
tions of FSM and LSM methods called block fast sweep-
ing method (BFSM) and block locking sweeping method

(BLSM). These algorithms are specifically designed for
running on shared memory architectures, and they are opti-
mized to efficiently use CPU caches. Detailed performance
testing showed high efficiency of parallel implementation.
Source code for proposed methods is available under open
source 3-Clause BSD license [19].

In Section 2, we will give an overview of the serial
sweeping methods. In Sections 3 and 4, we will analyse
in detail prior parallel implementations [10, 32] of the
sweeping methods, highlighting performance difficulties
that we attempt to solve in our methods. In Section 5,
we introduce proposed block sweeping methods with
different approaches to task execution synchronization, and
in Section 6, we present and discuss performance tests
results and selection of the stopping criterion parameter in
sweeping methods.

2 Serial sweepingmethods

Here, we will give a brief overview of serial sweeping
methods for reader’s convenience since it is directly relevant
for analysis and discussion of prior and proposed parallel
sweeping methods that will follow (for detailed information
about these methods, see original papers [1, 31]).

Fast sweeping method is used for computing the viscosity
solution t (x) ≥ 0 to the boundary value problem for the
eikonal equation given in the following form:

|∇t (x)| = 1

v(x)
, x ∈ � ⊂ Rn, (1)

t (x) = f (x), x ∈ � ⊂ �, (2)

where, in our case of seismic applications, t (x) is the
unknown function describing first-arrival travel time in
point x, v(x) is a given velocity in x, � is the computational
domain where the solution will be computed, and � is a
subset of � (e.g. a point source or an area around it) where
boundary values f (x) of the t (x) solution are given.

FSM uses the following Godunov upwind finite difference
scheme [20] to discretize the partial differential equation (1)
on a regular grid. In three-dimensional case with Si×Sj ×Sk

grid dimensions, it can be written as follows:

[(ti,j,k − ti min)
+]2 + [(ti,j,k − tj min)

+]2
+[(ti,j,k − tkmin)

+]2 = h2

v2
,

(3)

where

(η)+ =
{

η, η > 0,
0, η ≤ 0,

(4)

and ti min, tj min, and tkmin are the minimum values of left and
right neighbours of ti,j,k in the computational stencil
along i, j , and k dimension respectively: ti min =
min(ti−1,j,k, ti+1,j,k), etc. This upwind nature of the
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discretization enforces the causality of the eikonal equation,
i.e. the solution is only determined by neighbouring values
that are smaller. One-sided difference is used on the grid
boundaries to ensure flow of information from inside the
computational domain where � is contained to the outside.

The first step of the fast sweeping method is the
initialization. Exact or interpolated values must be assigned
at grid points in or near � to enforce boundary condition (2).
These values are fixed during the rest of calculations. In all
other grid points, sufficiently large positive values must be
assigned, i.e. larger than the maximum possible value in the
computational domain for the given velocity model.

Next, Gauss-Seidel iterations are performed with alter-
nating sweeping orderings as a way to enforce causality in
the entire computational domain. There are 2N sweep direc-
tions in N-dimensional space, so, for example, in 2D case,
these are (not necessarily in that particular order) as follows:

1 : i = {1, . . . , Si}, j = {1, . . . , Sj },
2 : i = {Si, . . . , 1}, j = {1, . . . , Sj },
3 : i = {Si, . . . , 1}, j = {Sj , . . . , 1},
4 : i = {1, . . . , Si}, j = {Sj , . . . , 1}.

(5)

During each sweep, we compute the solution ti,j,k to the
quadratic equation (3) at each grid point (i, j, k). To do that,
we must account for the case when some of the summands
on the left side of Eq. 3 are zero, so we order ti min, tj min,
and tkmin in increasing order as ta1 min ≤ ta2 min ≤ ta3 min ≤
ta4 min = ∞. We look for integer 1 ≤ p ≤ 3 and the
corresponding unique solution x that satisfies

p∑
i=1

(x − tai min)
2 = h2

v2
,

tap min < x ≤ tap+1 min.
(6)

Then, we select the smaller value between the old value toldi,j,k

and the computed value x as the new value at that grid point:

tnewi,j,k = min(toldi,j,k, x). (7)

In summary, during each sweep, we update the solution
in accordance with the causality along continuous parts
of its characteristics with the direction of information
propagation corresponding to that of the sweep. Due to
the updating rule (7), the value at each grid point is non-
increasing; once it reaches its minimum value, it is the
correct one and will not be changed. The method converges
when all grid points are assigned their correct values

and cannot be changed anymore. The number of sweeps
needed for convergence largely depends upon how often
characteristics change their direction from one octant to
another in three-dimensional case, or from one quadrant
to another in two-dimensions. So for homogeneous N-
dimensional velocity model, the number of sweeps needed
for full convergence will be 2N , since characteristic curves
are straight lines. This is illustrated in Fig. 1 for the two-
dimensional case with Eq. 5 ordering of sweeps. In the case
of more complex models, the fast sweeping method can
require higher number of iterations until full convergence.
Note, however, that a more effective stopping criterion can
be selected that ensures the information from � has reached
all grid points:

‖tnewi,j,k − toldi,j,k‖∞ ≤ ε. (8)

The idea behind the locking sweeping method is to
eliminate the unnecessary computation of the solution to
Eq. 6 when we know in advance that the value tnewi,j,k

in updating rule (7) will not be changed, i.e. when the
neighbouring values in the computational stencil were
not changed in the last iteration. To do that, LSM uses
“locks” (boolean flags) assigned to each grid point. In the
initialization step, all grid points are locked, except for the
stencil neighbours of any fixed grid points with initial values
(sources). While sweeping, the lock of the current grid point
is checked. If the point is locked, then the solution is not
computed and we move on to the next grid point. If it is
unlocked, we compute the solution as usual, and if it is less
than the old value, we update the time as per (7) and unlock
all neighbours with times greater than the updated time at
the current grid point. This modification can significantly
reduce computational time compared to the original fast
sweeping method for a lot of velocity models; however,
it imposes slightly increased costs in terms of required
memory to store locks.

It is important to note here that the way x value in Eq. 6
is calculated (using either one, two, or three neighbouring
grid points) and whether we update the current value using
updating rule (7) or not can lead to potential load imbalance
between computations of solution at different grid points
depending on the velocity model. In locking sweeping
method, load imbalance due to some of the points being
locked is of even greater concern. We have taken this into

Fig. 1 FSM 2D example for
homogeneous velocity model.
Only four iterations are required
for full convergence. Solution is
shown after each iteration.
Arrows denote sweeping
direction for each iteration
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consideration during development of our proposed parallel
sweeping methods, discussed in Section 5.

3 Prior parallel sweepingmethods

There have been several parallelization approaches pro-
posed for the fast sweeping method. In [32], two different
parallel implementations were introduced. The first one is
based on the idea that sweeps with different directions can
be performed simultaneously. After each 2N sweeps, there
are 2N solutions, whereN is space dimensionality. The min-
imum value of these solutions is taken at each grid point as
the initial value for the next iteration. Therefore, it is guar-
anteed that the solution will get better after each iteration
and eventually converge when using first-order finite differ-
ence scheme employed in the FSM. Note, however, that this
implementation does not scale above 2N execution threads
and also requires more memory to store 2N numerical grids.

The second approach proposed in [32] is the domain
decomposition. Computations in each subdomain can be
performed using fast sweeping method either in serial
manner as in the original FSM or in parallel as in
the above-mentioned approach. Overlapping grid points
between neighbouring subdomains are updated after each
2N sweeps to minimize the number of communications
required. Minimum value of each group of overlapping
points is selected as the updated solution for the group.
As with the previous implementation, this one will also
converge in a finite number of iterations. However, as
testing in [32] shows, both approaches can require more
sweeps to converge than the original serial FSM. This can
complicate efficient application of these implementations
in cases where velocity model is complex and therefore
requires many sweeps to converge.

A more recent approach to FSM parallelization was
introduced in [10], which we will refer to as DFSM for
short. Unlike in the previously discussed approaches, in
DFSM, grid point updates in each sweep are parallelized
due to the fact that there exist sets of independent points
where grid point values can be computed simultaneously.
To illustrate that fact, let us perform dependency analysis of
the original FSM for the case of three-dimensional space.

To simplify the exposition, we will fix sweep direction
to i = {1, . . . , Si}, j = {1, . . . , Sj }, k = {1, . . . , Sk}, since
other sweep directions can be given by inverting some or
all of the indices, i.e. rotating the axes. As was noted in
Section 2, when using discretization scheme (3), each grid
point update procedure updates value of current (i, j, k)

point and reads current values of neighbouring points in the
computational stencil: (i−1, j, k), (i+1, j, k), (i, j −1, k),
(i, j+1, k), (i, j, k−1), and (i, j, k+1). At first glance FSM
and LSM are strictly serial methods, since each step of the

sweeping cycle depends upon the previous steps. However,
since only the neighbouring points from the computational
stencil are required, update of the (i, j, k) point can actually
be performed immediately after all points with lower indices
were updated, i.e. points from the set:

D(i,j,k) = {(p, q, r) | p ≤ i, q ≤ j, r ≤ k} \ (i, j, k). (9)

Therefore, sweeping process can in fact be parallelized,
since many of the points can be computed independently
from each other.

In DFSM, grid points along the so-called levels, that
are diagonals in two-dimensional case and diagonal planar
slices in three-dimensional case (Fig. 2), are updated
simultaneously, since there are no dependencies between
any of them. Global synchronization of execution threads is
used between computations of different levels. Therefore,
since the information flow of this algorithm is essentially
the same as in serial FSM, the same number of sweeps is
needed for it to converge. And it does not require additional
memory.

In [9], authors of DFSM proposed a new hybrid
massively parallel fast sweeping method (HMP-FSM) for
distributed memory architectures. It uses coarse-grained
domain decomposition to partition the domain among
available compute nodes, while DFSM is used as a fine-
grained shared memory method to compute the solution
within each subdomain.

In this paper, we will focus on parallel implementation
of the sweeping methods for shared memory architectures,
specifically, on multicore CPUs only.

4 DFSM performance analysis

We have tested the performance of our implementations
of the original serial FSM and parallel DFSM, written
using C language with OpenMP used for parallelization
on shared memory architectures. We emphasise that we
have tested our own implementation of DFSM; therefore,

Fig. 2 Examples of DFSM levels in 2D and 3D for given sweeping
directions
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Table 1 Performance test results for FSM and DFSM (1 and 4 threads) on homogeneous velocity model, 601 × 601 × 601 grid points, nine
iterations

Performance metric FSM DFSM(1) DFSM(4) LSM DLSM(1) DLSM(4)

Time (s) 50.15 241.32 71.39 23.94 103.94 40.79

Cycles 1.58E+11 5.21E+11 6.13E+11 8.21E+10 2.31E+11 3.30E+11

Instructions 2.73E+11 3.51E+11 3.91E+11 1.38E+11 1.68E+11 2.16E+11

IPC 1.73 0.67 0.64 1.68 0.73 0.65

L1-dcache-loads 8.74E+10 9.79E+10 1.09E+11 5.00E+10 5.20E+10 6.13E+10

L1-dcache-load-misses 1.22E+09 1.13E+10 9.18E+09 4.62E+08 6.77E+09 6.58E+09

L1 load miss rate (%) 1.39 11.58 8.45 0.92 13.02 10.73

L1-dcache-stores 2.81E+10 5.16E+10 5.56E+10 2.31E+10 2.19E+10 2.50E+10

L1-dcache-store-misses 1.60E+08 5.29E+08 5.21E+08 1.78E+08 1.06E+09 1.05E+09

L1 store miss rate (%) 0.57 1.03 0.94 0.77 4.85 4.19

L1-dcache-prefetch-misses 1.16E+09 2.66E+09 2.18E+09 4.16E+08 2.07E+09 2.24E+09

LLC-loads 1.31E+08 7.09E+09 5.80E+09 3.86E+07 4.64E+09 4.56E+09

LLC-stores 1.09E+08 1.12E+08 1.11E+08 1.12E+08 1.11E+08 1.22E+08

dTLB-loads 8.75E+10 9.78E+10 1.09E+11 5.01E+10 5.20E+10 6.14E+10

dTLB-load-misses 5.12E+04 4.02E+09 4.08E+09 3.74E+04 1.25E+09 9.72E+08

dTLB load miss rate (%) 0.00 4.11 3.76 0.00 2.41 1.58

dTLB-stores 2.81E+10 5.16E+10 5.57E+10 2.30E+10 2.20E+10 2.49E+10

dTLB-store-misses 1.44E+04 3.73E+04 4.44E+04 1.80E+04 4.19E+04 7.29E+04

dTLB store miss rate (%) 0.00 0.00 0.00 0.00 0.00 0.00

Test performed on Intel Core i7-2630QM quad core CPU

our performance testing results may differ from the results
presented in [10] due to differences in implementations.
As can be seen from the results of testing presented in
Table 1, performance of DFSM scales well when compared
to its single-threaded performance. However, DFSM on
single thread is actually slower than serial FSM, which
leads to low speed-up for parallel DFSM when compared
with serial FSM. Since computational kernel and number
of iterations of the sweeping algorithm are the same for
both implementations, this can be explained by different
memory access patterns in these methods. In FSM, memory
is accessed sequentially during the whole sweep. In DFSM,
memory is accessed non-sequentially by iterating across
different levels, which can potentially lead to problems with
efficiency of cache utilization.

To confirm this hypothesis, we have used Linux perf1

program. Perf is a powerful tool for performance profiling
that uses PMUs (performance monitoring units) in CPUs to
collect data on hardware events, including the number of
instructions executed, cache references and cache-misses,
and branchmispredictions. As can be seen from the results, our
DFSM implementation indeed suffers from poor CPU cache
utilization, with high rate of cache-misses. Therefore, we

1See https://perf.wiki.kernel.org

conclude that FSM with employed first-order scheme is
memory-bound, and we should optimize our implemen-
tation primarily with the efficient use of CPU cache in
mind.

Let us perform more detailed analysis of the test results
before moving on to optimization goals and strategies. First,
we will give a brief overview to the reader of the memory
hierarchy in modern computer architectures, focusing on
CPU caches. Readers familiar with this topic can skip
on to the next paragraph. Generally speaking, to avoid
problems related to its efficient use, one must follow the
principle of locality, also known as locality of reference
[26]. There are two types of locality of reference that are
discussed in computer architecture—spacial and temporal.
Spacial locality means that elements that are close to each
other in memory are more likely to be accessed, such
as the case with sequential processing of elements in a
one-dimensional array, accessing local variables on the
call stack, reading program instructions from memory, etc.
Temporal locality means that if the element was accessed
recently, it will likely be accessed again soon, obvious
example being again local variables such as cycle counters
or temporal values in calculations, instructions from bodies
of cycles, and elements in the array that are repeatedly
accessed. In modern computers, the speed at which CPUs
can process data is much faster than the speed at which

https://perf.wiki.kernel.org
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data can be fetched from RAM, and to compensate for that
difference, relatively small but fast caches are used between
CPU and RAM as a temporary storage for data being
processed. Modern multicore Intel/AMD CPUs commonly
used in workstations and servers usually include three
levels of caches: per-core L1 (commonly 32–64 KB), per-
core/per-module L2 (commonly 256–512 KB), and shared
L3 (several megabytes), also known as the last level cache,
or LLC. Data is fetched to cache in cache lines, usually
64 B in size. Each cache line can be placed in a specific
location in cache, depending on cache associativity. For
example, in an eight-way associative cache, there are eight
banks. Each bank works as a direct-mapped cache, i.e. any
cache line from memory can be placed at a single specific
location in the bank, determined by the cache line address
in memory. Therefore, in eight-way associative cache, there
are eight possible locations in the cache where a cache
line can be placed that form what is called a cache set.
When a line is found in a cache, it is called a cache-hit,
and data is retrieved quickly. Otherwise, if it is not found,
then it is called a cache-miss, and cache line has to be
retrieved from slower levels of memory hierarchy. Since
caches are considerably smaller than RAM, some cache
lines may have to be evicted from cache to make room
for the cache line required at the moment. Which line is
evicted is determined by the replacement policy, such as
the least recently used (LRU). To improve performance,
CPUs can also use a form of speculative execution called
cache prefetching, i.e. they load cache lines to cache before
they are actually requested. Prefetching can help a lot when
memory access pattern is easily identifiable, such as when
sequential elements of the array are being accessed. Another
type of cache is translation lookaside buffer, which is used
to improve translation speed of virtual addresses to physical
ones in architectures with paged or segmented memory. If
the required address is found in the TLB, then matching
physical address is retrieved quickly; otherwise, page table
must be accessed in RAM in a process called page walk
which takes considerably more time. Virtual-to-physical
mapping of the requested address is then entered into TLB,
evicting one of the other cached mappings. To summarize,
memory hierarchy is built on and works well in the general
case because of the principle of locality. Particularly, it is
important to maintain spacial locality of reference to
efficiently reuse data from a single cache line and to take
advantage of hardware prefetching done by the CPU, and
to maintain temporal locality to minimize the chance of
cache lines getting evicted and reloaded more times than
necessary.

Now, let us analyse performance metrics from Table 1.
Testing was done on an Intel Core i7-2630QM quad
core CPU based on the Sandy Bridge microarchitecture.
Firstly, as can be seen from the L1-dcache-load-misses and

L1-dcache-store-misses events, there are several times more
cache-misses in DFSM than there are in serial FSM.
Cache-miss rates, that are calculated as ratios of load-
misses and store-misses to loads and stores respectively,
are significantly higher in DFSM. This can be attributed to
DFSM’s memory access pattern having poor spacial as well
as temporal locality. In one cache line, there are elements
from multiple levels of grid points in DFSM due to the way
that array elements are stored in memory. Therefore, cache
lines can get evicted while processing grids sufficiently
larger than cache size, since it is highly likely that while
updating points from the current level, there will be much
more cache lines accessed from the same cache set than
there are banks.

Secondly, LLC-loads are an order of magnitude higher in
DFSM which means that cache lines are frequently evicted
and are reloaded later from slower memory. Latency of
data access differs significantly between different levels
of memory hierarchy—for Sandy Bridge CPUs, L1 data
cache has a best case latency of 4 cycles, L2—12 cycles,
and L3—26–31 cycles (see [16]), and RAM latency is
usually in the order of at least 100 cycles and more, so
small changes in cache-miss rates can have potentially huge
performance difference, as can be seen from the results.
Also notice higher number of L1-dcache-prefetch-misses
in DFSM compared to FSM, which indicates that CPU is
having more problems with efficiently prefetching data with
DFSM’s memory access pattern than in sequential access
pattern in FSM.

Another potential problem for parallel implementation is
the loss of temporal locality due to false sharing of cache
lines between cores, i.e. lines that are written to in one core
are simultaneously read in another. This means that due to
cache coherency protocol that enforces correctness in cases
where the same cache lines can reside in several coherent
caches on different CPU cores, the next time that another
core will try to read a modified cache line it will have to
reload it completely.

Lastly, higher number of dTLB load-misses and store-
misses and corresponding high dTLB miss rates indicate
that TLB is as well not used efficiently, which can be
explained by elements from the same level having poor
spacial locality—too many memory pages are accessed
during processing of one level, which leads to more frequent
page walks. In all metrics, FSM performs much better due
to having higher spacial and temporal locality of references
as can be summarized by a higher instruction/cycle (IPC)
metric for FSM. All of these points are also valid for
LSM/DLSM comparison.

Problems with efficient use of CPU caches in DFSM
can potentially reduce the efficiency of HMP-FSM [9]
implementation for distributed memory since it uses DFSM
at the shared memory level.
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5 Proposed block sweepingmethods

In order to solve problems with efficient use of memory
hierarchy outlined in the previous section, we should ensure
high locality of reference in a parallel implementation of
the sweeping methods. As we saw earlier, FSM and LSM
already utilize CPU cache quite efficiently due to the
sequential nature of sweep orderings. So a good idea would
be to maintain this sequential memory access pattern in each
thread of the parallel sweeping algorithms, which is exactly
what we do in our proposed block fast sweeping method
(BFSM) and block locking sweeping method (BLSM)
for numerical solution of the three-dimensional eikonal
equation.

The key idea of the block sweeping methods is to perform
decomposition of the computational grid into blocks of
grid points as shown in Fig. 3. During each sweep of the
algorithm, we distribute computations of different blocks
among the computational threads. The solution inside each
block is computed using standard sequential fast or locking
sweeping method respectively, which allows us to maintain
good locality of memory accesses. Data dependencies
between computations of different blocks are the same as
those for grid points (9): block (i, j, k) can be computed
after blocks (i + ci, j, k), (i, j + cj , k), (i, j, k + ck), where
ci, cj , ck ∈ {−1, 1} are determined by the current sweep
direction. There are two important questions involved in
the implementation of the block sweeping methods: the
choice of block size and synchronization of computations
of different blocks according to the data dependencies.
We have developed several implementation approaches for
these problems.

The first implementation approach, which we will call
BFSMv1 and BLSMv1 respectively, is using the same idea
as in DFSM, only on the block scale. We divide our set
of blocks into levels, where blocks from the same level
are distributed to threads and are processed simultaneously.

Fig. 3 Example 2× 2× 2 decomposition of the grid in BFSM/BLSM,
with block indices specified as (i, j, k). Dependencies of (i,j,k) block
for the given sweep direction

Global synchronization of threads is used between different
levels of blocks (see Fig. 4). This approach alleviates
problems with efficient use of the memory hierarchy
encountered in DFSM; however, it may not be the most
efficient approach to synchronization when we consider the
fact that the amount of computations in each grid point, and,
therefore, block, may vary. As noted in Section 2, the first
obvious source of imbalance is the way that the solution
is computed for Eq. 6. Another is the updating rule (7),
although it will have a less profound effect since the possible
difference is only one memory store operation. When using
LSM to compute solutions in blocks, the imbalance problem
can become even more damaging to performance since it
is possible that in some blocks, there will be almost no
computations performed compared to other blocks due to
the locking mechanism. All of these factors can potentially,
depending on the velocity model and block assignments to
threads, lead to situations when there is significantly less
work available to some of the threads during processing of
certain levels, which will negatively impact efficiency of the
parallel algorithm compared to the serial method.

The second approach, BFSMv2 and BLSMv2, was
developed primarily to see if any performance gains can
be achieved by reducing the time it takes for all threads to
begin execution due to data dependencies between blocks
by reducing their size, possibly down to one or two cache
lines, while still maintaining good spacial and temporal
locality of memory accesses. We do this by statically
assigning i-planar slices of blocks (i being the slowest
changing grid dimension in regards to memory addresses)
to different threads in round-robin fashion. One or two
cache line block size lower limit and data alignment on
cache line-sized boundaries are used to avoid false sharing
of cache lines between L1D-caches of different CPU
cores. Synchronization of block computations is done using
semaphores similar to classic producer-consumer problem.
This approach is illustrated in Fig. 5. Blocks computed by
the t id thread, where t id is the thread number, or thread ID,
are depended upon blocks computed by the (tid −1) thread.
Each t id thread is assigned its own semaphore S[t id]. Once
t id thread has completed computation of another one of

Fig. 4 BFSMv1 example for 2×2×2 decomposition on three threads
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Fig. 5 BFSMv2 example for 2 × 2 × 2 decomposition on two threads

the blocks assigned to it, it increments S[t id] by one. After
processing each block, (tid +1) thread waits until S[t id] >

0, then decrements S[t id] by one and begins processing its
next block. Therefore, we avoid global synchronization of
threads. Synchronization delays due to load imbalance in
t id thread can only be caused by a delay in (tid −1) thread.
This approach can be thought of as pipelining of the block
computations and can be advantageous on systems with a
high number of CPUs and CPU cores. Note, however, that
such static assignment of block computations can still suffer
from the same limitations as the previous implementation
method in the case of highly unbalanced computational load
between blocks as delays can still propagate. Higher load
in t id thread can potentially cause all threads with higher
thread ID to idle.

The third approach, BFSMv3 and BLSMv3, was devel-
oped specifically to avoid imbalance problems by assigning
blocks to threads in a completely dynamic, dataflow fash-
ion (Fig. 6). The key idea is to avoid global synchronization
between threads by allowing blocks to be executed as soon
as their data dependencies are satisfied. Each thread must
pick up a new ready for execution block as soon as it com-
pletes any previous work. To implement this approach, we
are using OpenMP 4.0 standard which introduced the ability
to directly specify data dependencies between tasks using
the task depend construct. That way, we have reduced
synchronization to the bare minimum possibility in accor-
dance with data dependencies in the sweeping methods.
However, we also lose increased data locality of the pre-
vious strategy. Performance of this approach will depend
largely upon the efficiency of dynamic task scheduling in
the OpenMP runtime.

Fig. 6 Dataflow in BFSMv3 in the case of 2×2×2 block decomposition

All of the three proposed methods of task synchroniza-
tion preserve the dataflow of the serial sweeping methods;
therefore, they will require the same number of iterations
(sweeps) as the serial methods to converge.

6 Testing results

The following performance tests were done on Novosibirsk
State University cluster2 on one of HP BL2x220c G7 nodes
with two six-core Intel Xeon X5670 CPUs, with a maximum
of 12 execution threads, one thread-per-core.

Velocitymodels We have tested performance of our proposed
block sweeping methods using three velocity models. The
first one is a 601 × 601 × 601 grid points homogeneous
velocity model, with V = 1 in the whole computational
domain. Point-source was placed in the centre of domain,
i.e. in (300, 300, 300) grid point, and initialized with t =
0 initial travel time. Since characteristics of this model’s
solution are straight lines, sweeping methods fully converge
in nine iterations (eight sweeps with different directions
and one more sweep when solution does not change at
all). It is the same model that was used in FSM/LSM vs
DFSM/DLSM performance analysis in Section 4.

To test performance of our methods on datasets more
typical to seismic problems, we have used Overthrust and
Salt velocity models (Fig. 7), produced by the Society
of Exploration Geophysicists (SEG) and the European
Association of Geoscientists and Engineers (EAGE). Salt
model dimensions are 676 × 676 × 210 grid points; source
was placed in (338, 338, 105) grid point. Overthrust model
dimensions are 801 × 801 × 161 grid points; source was
placed in (400, 400, 80) grid point.

Stopping criterion parameter selection Overthrust and Salt
models are more complicated than the homogeneous model
and require many more iterations to fully converge. However,
as noted in [31], we do not need full convergence to obtain
sufficiently accurate solution in practice and can use more
efficient stopping criterion (8) with ε as O(h), where h is a
grid step, therefore, terminating sweeping methods early.

To select the best balance between solution accuracy and
performance we logged maximum relative error

MRE = max
i,j,k

(|(t(Q)
i,j,k − t

(q)
i,j,k)/t

(Q)
i,j,k|) × 100, (10)

between fully converged solution t (Q), obtained onQ iteration,
and current solution t (q) at each q ≤ Q iteration, and the
time it took to compute current solution using BLSMv3
method. The results are presented in Fig. 8. A dozen or so

2See http://nusc.nsu.ru

http://nusc.nsu.ru
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Fig. 7 SEG/EAGE Overthrust
and Salt velocity models

iterations is enough for both models to obtain a solution
with MRE close to one percent, and performing more than
50 iterations is impractical due to the fact that the MRE
drops to less than 10−2% in both cases. In our subsequent
performance tests, we use ε = hmin/vmax as the stopping
criterion parameter, where hmin is the minimal grid step and
vmax is the maximum velocity in the computational domain.
With it, early terminated solutions for Overthrust and Salt
models take 17 and 24 iterations to compute, with resulting
MREs 0.59 and 0.18%, while fully converged solutions
were obtained only after 346 and 339 iterations respectively.

All of the tested implementations (serial sweeping
methods, DFSM/DLSM and all versions of block sweeping
methods) required the same number of iterations to
converge on all tested models when using the same stopping
criterion parameter.

Block size selection We have also tested computational
time versus chosen block size for each of our proposed
methods. The results are presented in Table 2. All proposed
block sweeping implementation approaches show similar
performance on tested velocity models and hardware for
practical purposes. BFSMv2 and BLSMv2 (with static
assignment of i-planes of blocks) appears to be the slowest
performing implementation approach; however, it is also
the least sensitive to block dimensions selection and shows
consistent performance on a wider range of block sizes.
BFSMv1 and BLSMv1 (modified DFSM/DLSM) is the
second best approach; however, more care should be taken
when selecting block size. BFSMv3 and BLSMv3 with

dynamic scheduling based on data dependencies between
blocks is the best of all three approaches when if comes to
computational time; however, it also has the smallest range
of optimal block dimensions. For all approaches, selecting
a too fine-grained block size leads to bad performance
due to significant synchronization overhead, while selecting
large block sizes leads to increased waiting times of threads
for data dependencies. Small block sizes are extremely
detrimental to BFSMv3/BLSMv3 performance also due to
increased potential for reduction of data reuse in L1/L2
caches, since threads can be assigned any block awaiting
execution, not necessarily the one adjacent to the block that
the thread just finished processing. Therefore, same cache
lines would have to be reloaded more frequently.

The best choice of block dimensions would depend upon
performance of employed software, such as compiler opti-
mizations, OpenMP runtime and synchronization primitives
implementations, and CPU processing power, so our recom-
mendation is to perform benchmark of the block sweeping
methods on the system where they will be run for data
processing on simple homogeneous model with dimensions
common to those of planned datasets, in order to select opti-
mal block size. First, increase block size along the fastest
growing index, then along the second-fastest. In our test-
ing across different systems, block dimensions with a small
number of (i, j)-rows, for example, 1 × 8 × Sk , worked
best. This approach does not require knowledge of specific
details of CPU cache implementation such as cache size
and cache associativity. However, on sufficiently large mod-
els, where Sk grid dimension along fastest changing index

Fig. 8 SEG/EAGE Overthrust
and Salt velocity models
BLSMv3 computation time and
maximum relative error versus
the number of iterations
completed
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Table 2 Block dimensions
versus computation time for
block sweeping methods

Block dims Time (s)

BFSMv1 BFSMv2 BFSMv3 BLSMv1 BLSMv2 BLSMv3

Homogeneous model:

1 × 1 × 16 11.63 10.94 136.86 12.51 9.91 146.74

1 × 1 × 64 8.47 8.35 40.78 7.96 6.33 39.29

1 × 1 × 301 7.78 7.81 11.81 6.05 5.65 10.96

1 × 1 × 601 7.52 7.77 8.04 5.83 4.54 4.84

1 × 4 × 601 7.60 7.77 7.46 3.48 3.51 3.56

1 × 8 × 601 7.49 7.76 7.38 3.60 3.56 3.47

1 × 12 × 601 8.52 7.72 7.42 4.01 3.53 3.92

1 × 24 × 601 10.06 7.77 11.14 4.51 3.60 6.80

Overthrust model:

1 × 1 × 16 12.81 11.43 162.35 17.71 11.15 165.45

1 × 1 × 64 9.58 9.07 47.33 14.16 8.52 49.82

1 × 1 × 161 8.55 8.69 11.64 12.40 7.75 11.45

1 × 4 × 161 8.20 8.50 8.37 6.67 6.71 6.83

1 × 8 × 161 8.45 8.46 8.02 6.59 6.61 6.45

1 × 12 × 161 8.50 8.44 8.30 6.68 6.64 6.52

1 × 24 × 161 8.60 8.48 9.26 7.13 6.65 9.99

1 × 36 × 161 8.68 8.50 13.67 7.30 6.72 14.44

Salt model:

1 × 1 × 16 16.59 15.22 192.87 26.34 17.00 196.96

1 × 1 × 64 13.19 12.08 58.85 21.01 12.65 60.84

1 × 1 × 210 11.32 11.56 13.16 18.00 12.15 13.48

1 × 4 × 210 11.02 11.36 11.00 10.25 10.32 10.23

1 × 8 × 210 11.05 11.34 10.69 10.33 10.38 9.94

1 × 12 × 210 11.27 11.31 10.87 10.39 10.35 10.27

1 × 24 × 210 13.58 11.39 14.42 11.73 10.46 16.69

1 × 36 × 210 13.47 11.43 21.29 12.16 10.62 24.34

k is large, about at least two times greater than L1 cache
bank size, reducing block size along k-dimension to at least
this bank size might be warranted to increase data reuse in
caches.

Parallel efficiency We have tested scalability of our proposed
methods’ efficiency. We calculate efficiency as

Efficiency (%) = tserial

tparallel × nth
× 100, (11)

where tserial is computation time for the original serial
method, i.e. FSM for DFSM/BFSM methods and LSM for
DLSM/BLSMmethods; tparallel is computational time of the
parallel method, and nth is the number of computational
threads. As can be seen from Fig. 9, all block sweeping
methods scale well, with efficiency in range of 85–95%,
while DFSM/DLSM methods show efficiency of 15–45%
compared to FSM/LSM due to problems with inefficient use
of memory hierarchy, discussed in Section 4.

Load imbalance We have also analysed potential sources of
load imbalance that were discussed in Section 5. In Table 3,
we present method event counts for processing of all three
models by the LSM method, namely: update calls—the
number of times grid point value update procedure was
called to perform computations according to Eq. 6 and (7),
unlocked points—percentage of calls to process unlocked
point that was not skipped over immediately, 1D, 2D,
3D computed—percentage of calls when new time value
was computed using only one, two or three neighbouring
grid points when solving (6), actually updated—percentage
of calls when new value was assigned to the grid point
according to updating rule (7). As can be seen from the
table, LSM reduces the number of computations the most
on simple homogeneous model, and the least on Salt model.
This explains low performance advantage of LSM for this
model, observed in Table 2 and Fig. 9. Potential imbalance
due to different new value computation paths is on the
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Fig. 9 BFSM and BLSM computation time and efficiency

contrary highest for homogeneous model and lowest for Salt
model. This data further supports the notion that dataflow
synchronization of tasks as in BFSMv3 and BLSMv3
should be more preferable since it does not enforce any
global synchronization points that can lead to some of the
threads finishing work early and idling.

Perf metrics Lastly, we have tested performance of our
proposed methods using Linux perf on the same Intel Core

Table 3 Sources of computational load imbalance in grid points for
tested velocity models for LSM

Events Homogen. Overthrust Salt

update calls 1.95E+09 1.76E+09 2.30E+09

of those:

unlocked points 20.98% 46.21% 59.09%

1D computed 1.40% 0.96% 0.66%

2D computed 7.40% 5.60% 5.47%

3D computed 12.18% 39.65% 52.96%

actually updated 20.98% 41.30% 53.31%

Total number of grid point value update procedure calls and
percentages for different computation paths taken during those calls

i7-2630QM system as in Section 4. We have not used cluster
in either of perf tests because it does not have perf installed
and this test required root access. Results are presented in
Table 4. Test were done with 1 × 10 × 600 block size
which was the best choice in our test for this system and
homogeneous 601 × 601 × 601 model. As can be seen
from the results and Table 1, our parallel implementations
show the same high efficiency of data caches and TLB
utilization as FSM and LSM serial methods. Miss rates
and other metrics are close to those of FSM/LSM. All
methods again show the same level of performance in a
practical sense. BLSMv3 turned out to be a little slower
that BLSMv2 probably due to higher dTLB load miss rate
which can be attributed to less restrictive assignment of
blocks to threads in the dataflow synchronization scheme.
Lower efficiency than during testing on clusters can be
explained by higher system load, since this is a workstation
system. There are more active processes competing for
CPU time than on a cluster node, where only essential
processes are usually run. Some of the threads can be
frequently pre-empted by the operating system, increasing
the time it takes to process some of the blocks, potentially
causing other threads to idle. Therefore, dataflow is again
the recommended approach for use on workstations due
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Table 4 Performance test results for BFSM and BLSM (4 threads) homogeneous velocity model, 601 × 601 × 601 grid points, nine iterations

Performance metric BFSMv1 BFSMv2 BFSMv3 BLSMv1 BLSMv2 BLSMv3

Time 14.60 14.35 14.24 6.93 6.82 6.89

Efficiency (%) 85.87 87.34 88.07 86.43 87.81 86.84

Cycles 1.63E+11 1.60E+11 1.60E+11 8.42E+10 8.28E+10 8.45E+10

Instructions 2.75E+11 2.75E+11 2.74E+11 1.39E+11 1.38E+11 1.39E+11

IPC 1.68 1.71 1.71 1.65 1.67 1.64

L1-dcache-loads 8.74E+10 8.74E+10 8.77E+10 4.99E+10 4.99E+10 5.02E+10

L1-dcache-load-misses 1.26E+09 1.25E+09 1.31E+09 4.85E+08 4.92E+08 5.13E+08

L1 load miss rate (%) 1.45 1.43 1.49 0.97 0.99 1.02

L1-dcache-stores 2.81E+10 2.81E+10 2.82E+10 2.31E+10 2.32E+10 2.32E+10

L1-dcache-store-misses 1.61E+08 1.73E+08 1.79E+08 1.83E+08 1.74E+08 1.93E+08

L1 store miss rate (%) 0.57 0.62 0.64 0.79 0.75 0.83

L1-dcache-prefetch-misses 9.12E+08 9.11E+08 1.22E+09 3.05E+08 2.72E+08 4.14E+08

LLC-loads 1.32E+08 1.03E+08 1.61E+08 4.16E+07 3.38E+07 6.89E+07

LLC-stores 1.07E+08 1.17E+08 1.23E+08 1.23E+08 1.20E+12 1.30E+08

dTLB-loads 8.74E+10 8.73E+10 8.77E+10 5.02E+10 5.00E+10 5.03E+10

dTLB-load-misses 1.70E+06 9.44E+04 3.05E+06 5.79E+05 7.23E+04 3.09E+06

dTLB load miss rate (%) 0.00 0.00 0.00 0.00 0.00 0.01

dTLB-stores 2.82E+10 2.82E+10 2.82E+10 2.31E+10 2.31E+10 2.32E+10

dTLB-store-misses 1.83E+04 1.40E+04 9.08E+05 1.65E+04 1.49E+04 1.13E+06

dTLB store miss rate (%) 0.00 0.00 0.00 0.00 0.00 0.00

Test performed on Intel Core i7-2630QM quad core CPU

to its most relaxed synchronization scheme in relation to
data dependencies, so the impact of load imbalance and
context switches on performance should be the lowest
possible among the three schemes in most cases. We also
note that we do not use software prefetch optimization in
our implementations so as to not increase its complexity
and introduce additional hardware/compiler dependencies
(aside from OpenMP 4.0 support requirement). In fact,
since miss rates are already low, we do not expect high-
performance gains from further cache use optimization. We
consider vectorization of computations a more promising
direction of further studies, since sweeping methods due
to their sequential nature of computations of neighbouring
grid points do not take advantage of SIMD capabilities
in modern CPUs. We plan to investigate the possibilities
of efficient vectorization of sweeping methods in the
future. Another interesting direction of studies would be
comparison of proposed methods and other parallel eikonal
equation solvers, such as parallel implementations of fast
marching, heap-cell, and fast iterative methods.

As noted in [9], any eikonal equation solver can be used
at the shared memory level in HMP-FSM distributed algo-
rithm. Therefore, proposed block sweeping methods can
also be used in HMP-FSM instead of DFSM to increase the
efficiency of computations performed on multicore CPUs
inside compute nodes.

7 Conclusion

In the present paper, we have analysed existing and
proposed new parallel sweeping methods for numerical
solution of the eikonal equation. These solutions can be used
in different applications: computing first-arrival travel times
as well as first-arrival waveforms [21], image processing
[27] etc.

Proposed methods are optimized for efficient use of CPU
caches and show high parallel efficiency of 85–95% on
modernmulticore CPUs. Basic idea of the proposedmethods is
to decompose numerical grid into blocks of tasks to be
processed by different threads using serial fast or lock-
ing sweeping methods. Proposed methods do not require
additional memory and converge in the same number of
iterations when compared to the original serial sweeping
methods. Several approaches were proposed for synchro-
nization of block computations; all have shown similar
performance, with the third approach based on dataflow
synchronization being the fastest in the majority of tests.

We have also performed convergence tests of the locking
sweeping method on SEG/EAGE Overthrust and Salt
models in order to determine suitable stopping criterion
parameter selection for practical applications. By using the
ratio of minimal grid step to maximum velocity in the
computational domain as the stopping criterion parameter
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we have greatly reduced computational times for these
models keeping maximum relative error of the early
terminated solutions being less than 1% compared to the
fully converged ones.
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